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A problem lnvolving unsteady rectilinear motion of & source in a fluld of
finlte depth 1is considered. A similar problem for a pressure pulse applied
to the surface of a deep fluld was considered in [1] with the aid of the
integral transform method.

Extensive use in the solution of wave problems has lately been made of
Green's functions constructed in various ways. This approach is used here
to investigate the unsteady motlion of hydrodynamic singularities.

l, Following Kelvin, let us consider the unsteady motion of a source of
intensity @(t,) as the result of the superimposition of disturbances from
several pulse sources that exist for infinitesimal time intervals at, and
at each point of the path traversed by the source displace a volume of fluid
Q(t,)At,. We then obtalin the following expression for a source situated at
the point (0, O, z,) of the bound coordinate system (*) moving with the velo-
city c(tl) in the positive direction along the x-axis

t t
O = SQ (t) @ (z+ s, u, 2, 29, t — 1)) dty, s = gc (mdtv  (1.1)
[ ] t
where ¢ (z, Yy, z, 24, £ — 1;) 1is a potential of a pulse source of unit inten-
sity.

To determline the potential ¢ we can make use of the time-dependent
Green's function [ 2]

oo

_ 6(t—1ty) ( cosh k (21 H) coshk (z + H) 1 —cos o1 (t — 1)
G =—% ! S lch [mkz—— T ERT ]Jo(kr)d/c
0 o —
r::sz—!—yz, clegk"aiﬂlkH (1.2)

*} With the origin lying on a free surface and the z-axis directed vertlcally
upward.
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66 A.I. Smorodin

The functlon ¢ gives the solution of the prohlem of a source of unit
intensity which arlses at the instant ¢, at some point of the stationary
fluid and then continues to exist unchanged.

Since 1t is important in the discussion to follow that no motion occurs
for ¢ < t,, the right-hand side of (1.2) has been multiplied by the function
e(t —_ tl) which 1s equal to cne for t > tl and to zero for ¢ < t, .

In order to obtain the potential of the pulse source it 1s clearly suffi-
clent to consider the difference in the functions ¢ for the two sources of
intenslity ¢ whose time of appearance differs by an infinitely small amount
at,, and to have aAt,~ O . If, further, we stipulate that ¢a¢,~ 1 , we find
that aG oG

P=qlG({t—t)—G{E—t—AL)]l,, .= "“‘IﬁAtl = (1.3)
or, differentiating (1.2), that
_G(t——t)oosinhkzcothk(zl—{-—H) .
¢ = 2n . Q cosh kH Jo (kl‘) dk
4]
[> o}
0(t—t kcoshe H + H) .
e l)gS (zsi,,,,:)f;(“ Ysin o, (¢ — 1) Jo (krydk (1.4)

0
where O (£— t,) 1s the Dirac delta function,

To obtain the potential of the moving source in accordance with (1.1),
we integrate (1.4), o
O = Q (t)ﬁ(t)Sdnhkz.coahk(zl+H) Jo (kr)dk—

21 cosh kH
0

t [e-]
g keoshk (z 4 H)eoshk (z1 4 H)
"'2_“8 Q (tl) dtlg SpcoshkH X
0 0

X sin oy (¢t —t,) Jo [KV (x + s)° + y° | dk (1.5)
whence as 4 - = we have'the familiar solution of Sretenskii [3] .

The ordinates of the free surface under the usual assumptions of small-
amplitude wave theory can be deflned as follows:

o 1] 3D 0@
= zle% — 5%

: (1.6)

z==0
In the simplest case where a source of intensity ¢ = const begins to
move from the state of rest with a constant velocity o , 1.e. where

8 =~ (t —t,)o , we have (1.7)
{= §°:-2-%;I—, = };Sﬁi’%;h(_%i@gjo[d V(€ + v1)® + 1] cos or, dt, dat

0 ¢
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In this expression

=7 — =2 ——
=5 "=g» bh=g. V==
A v,
g g
a:kH, 0=Voctanhoc, TZt(ﬁ) s le(t—‘tl) (1—{‘>

Changes in the ordinates of the free surface ( = {((r) at various instants

of time &re shown in Fig.1l, which contains the results of computing integral

(1.7) for n =0, v =0.5 and {,=— 9.5 on a computer (curve 1).
As 1 - = , (1.7) can be used to obtain expressions for the ordinates of

the free surface with steady source motion. Specifically, for n = O we

have
_—
¢ /\\ . 1 =8, + S, (1.5)
4 \ §=0 o
N Sy — 1 acosha (1 +§1) da
= 1= -v-g cosh 0, v V’Gz NPT
2 0
§=/_~» o
1 acosho (1 L1) of __ da
0 S =7& cosh o €S Var &
- 1 < coshot (1 ¢
? S3:ﬁ&a c(o:sha-'_gl g (xB) %
0 0
- SC—)
x cos 2= B do

Fig. 1
where o, 18 a root of the equation g=av,

Fig. 2 (curve 1) depicts the shape of the free surface with steady motion
of the source just considered. Trial calculations show that for large values
of 2 and T , numerical integration of (1.7) and (1.8) becomes practically
imposslible due to the inordinately large amount of computer time required.

A1
iy

:m) These difficulties have to
do with the oscillatory char-
acter of the integrands in (1.7)
and (1.8). At the same time,
we know that integrals of rapidly
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oscillating functions are
\kT“<&xLo* approximated quite closely by
g
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their asymptotic expansions.
Such expansions can be obtained,
for example, with the aid of
the stationary phase principle.
om0 ? But the stationary phase for-

_____ 3 mula gives only the first term
4 of the asymtotic expansion and
can be applled only when the
denominator of the integrand
does not vanish, For this rea-
son, we will obtain the asymp-
totlc expansions of 1ntegrals
Fig, 2 of more general form.
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68 A.I. Smorodin

2. The integrals of rapldly oscillating functions encountered in the

solution of wave problems can in most cases be written in the form
Y

= (1) o) 2.1
I Sh(u)e *(¥) dy (2.1)

a
where % 1s a large parameter, and o(u), 7 (u) and s,(u) are differ-
entiable for a<{u < 7.

If o'(u) #0 and g,(u) # O within the limits of integratlon, then 1n
order to obtain the asymptotic expansion 1t 1s sufflclent to Integrate {2.1)
by parts, whereupon each lntegration yields the next succeeding term of the
expansion [4].

Cases involving "singularities” — zeros in the denominator or zerg values
of the derivative of the phase function in the trigonometric factor (station-
ary points) require special consideration. It turns out to be posslble to
represent the integral under investigation as a sum of two terms, of which
one has the same singularity as the integral being considered but 1s inte-
grable in closed form, while the other econtains no singularities and 1s inte-
grable by parts.

For g <8 <y let us have g(g) = 0 and s,(g) = 0, and p'(g) # 0
and r,’(8) # O . Introducing the notation ¢(u) = o(u)s, (u)/ 72(u), where
v(u) 1s differentiable, we then obtaln .

(2.2)
<

v . e(v) .
_ (R0 ke gy ([ 20 ¥6) gibel) $@) ( &M
d Sq,(u)e * du &[«p'(u) cp'(m} v ¥ @de+ o (B)cg(ga) T

a a

The first term on the rig@p-hand side of (2.2) contains no singularities and
can be integrated by parts; the second may be written as

@{Y) 1 :p(‘u) A o0 L oo 1

S —ehody = — S — etkw diy — S —e"‘“’dw-{—& —etkwdw  (2.3)
w w w w

P(x) —-00 (v} ~c0

Ir x>0 and ¢la) < @ly) , 1.e. xp’(p) > O, the first and second terms
in the right-hand side of (2.3) can also be integrated by parts, and the last
one can be computed in closed form. Finally, since kw'(ﬂ) can be less than
zero, we find that

Y

V) ko gy . TPO) o o uer
Sw(u)e ) du = v ® 8 ko' (B) + C (u) L:—-a, (2.4)

where C(u) is obtained by formal integration by parts of the left-hand side
of (2.4).

Asymptotic expansions for other types of integrand singularitles can be
obtalned in a similar way.

In particular, for mp’(s) = O and o"(8) # O we have
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.
4 (1) ot du = o (2 i [ 455 — 1250 __ 30is
S\P(u)ekcp( )du—%(lk%l) {1——23;[ 5o s
2] Lo (g exn (iboo + Tsign hys) £ C@)[ . (@5)
=L 1%
wn "'6u u=B' cP".—'n!aun st

The first term of this expansion gives the formula for the stationary
phase.

The formulas just obtalined imply that the asympotlic expansion of the inte-
gral in the presence of singularities consists of two parts, of which one is
obtalned by formal integration by parts, whlle the other is assoclated with
the presence of a singularity and 1s determined by the nature of that singu-
larity. It is also clear that if several singular points occur within the
1imits of integraticn, their individual contributions must be added together.

3. To apply the asymptotic formulas obtained above we replace the Bessel
function in (1.7) by its integral representation
k13
Jo(aVE T ) = %—Scos [ (& cos @ + 1 sin 0)] dO
0
and integrate over the time

= 1 é §d9 (io acosha (1 4 gl)-{ (—1)"*1sin [ap cos (&

cosh 0L

—6)]
+
e S 6+ (—1)"av cos 0

+ sin [ot -+ (—1)" azt cos 8 -+ (—1)™ ap cos (& — 6)] }doc
6 -+ (—1)"av cos 6 )
e=VELW, 8= w /8, 1>0
We confine ourselves to the case of subcritical velocities (v < 1). For

n = 1 the denominators of the inner integral can vanish; 1in addition, the
second term can have stationary points.

(3.1)

For large values of p , when the order of magnitude of the ratio v/p
is equal to unity, the contribution due to the first of the aforementioned
singularities can be obtained with the aid of Formula (2.4)

1 oa °'coshat;® (1 + Z1) cos [a,°p cos (& —0)] |
o _ _vg ; o E {SIgn [cos (8 — 0)] -+
0

1 sign [.c' — a“— — £ cos (8 — e]} d9 (3.2)

o . do
s=06(x’), ¢’= gz for a:af)
where q;° 1s a root of Equation
¢ = avcosO (3.3)

The expression within the braces in the right-hand side of (3.2) differs
from zero for
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|8 —6]>7, a%m5>»—$mﬂﬁ—m (3.4)

In this case the 1lntegral over g8 has statlonary points. Differentia-
ting the phase function of the trigonometric factor and recalling-that ¢
and a,° are related by expression (3.3), we obtailn the following condition
for determining the value of ¢, corresponding to thé statlonary points

;%% sin 0
[ot, cos (% — 0)] = ————-cos (% — 0) + & sin (& —6) =0 (3.5
1

This equation can have two roots (¢ = 1, 2), so that with the aid of For-

mula (2.5) we obtain

v Vax é o easha; (14 L) [242 (92 + 6'2) — 2a,06']
i=1 (EB "’— ni) /‘cosh‘li [aic (a B2 — 62) + s (c — aid )2] /l

Xcos[dzvil— c1%2“6211——(—1) ] (3.6)

"

where ¢, ¢’ and ¢” should be taken for q = q,.

Let us consider the existence conditlons for the roots of Equation (3.5).
To this end, we use (3.3) to eliminate ¢ ,

a ¢’V a2 —g2
o6 \ on ¢ = — f(ai)’ f(d'i) == Vzt g (3'7)
/| 7\ o;v° — oC
24 Fig.3 shows the graph of the function rlq,)
T for v = 0.6 , whence it follows that (3.7)
a2 j can have roots only for points lying within
} the angle
i
Vi a, & %@ >0 wn [— f ()] 3.8
(4 *
The other boundary is given by condition
Flg. 3 (3.4), whieh upon elimination of ¢ becomes
200’
=< ((vz+c ) —= )
i
or

a,v* — a6’ ¢’ ]/aiﬂv? —a?

0>E>— o, A< (3.9)

Flg. 4 gives an overall view of the boundaries obtalned above for v = 0.6
and T = 10.5 as well as the shapes of the equal-phase lines which are
obtained by equating the argument of the cosline in the right-hand side of
(3.6) to mp (m =1, 2,...). This condition together with (3.7) yields a
system of two equations with the parameter a, whose value may be set arbl-
trarily. The gecometric locus of the points thus obtained (broken lines in
Filg.4) corresponds to the locus of the crests and troughs of the wave system
in the wake of the source. Analysis of the snape of these curves reveals
that the points corresponding to a,< ax ({ = 1) give a sysctem of transverse
waves, and those for which a,>a, (¢ = 2) are associated with divergent waves.
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Condition (3.9) implies that there is a region in the wake of the source
where only divergent waves are present (*).

As F - = Formula (3.8) becomes the usual condition for the wake bound-
ary 1> %> o (—1/ PfS), and (3.9) yields the circle

32y - ) 10

In additlon to the singularities considered above, the inner integral in
(3.1) has stationary points for a = a,’ that satisfy Equation

%: s 4+ (—1)"vecos 8 4 (——1)"%005 (¢ —0)=0 (3-11)

Then, applying Formula (2.5), for large r we have

1 T (xk“ cdshako (1 + gl) sin [(G —a OGI) T — l/d,ﬂ]
C(% — __ . |
v Vzn § V‘t’l s” l\coshak° 6+ (_1)n akov c0s 0 dl (3 12)

Integral (3.12) can also have stationary points
given by condition

4 03 nil_ o . p .
: = (— 1), [Usm 0 — £ sin (8 — e)] = 0(3.13)
.‘7_
or, upon elimination of ¢ with the aid of (3.11),
2k by cohdition

” (v+ E/7)? -+ (/1) =02 (3.14)

It can be shown that Equation (3.11) for n > ©
) 7 has solutions only for n =1 ; in thils case, in
7

<z 4 7 ?  accordance with Formuia (2.5), we obtain
fl,/l‘L 1
/1/7, *\:\‘\ s _ 1 cosh o, (1 4 £1) o 2 sin (5 — 6°) T
/,l’,/] \:;:\\ > T cosh o, s {c”| 6 —a, v cos 6,
—rgilf Ay
2t AN
[ | LRI )2 _
,’j//ﬁfj \\\\:\‘ A cos 0, = -————————-——+ TYY (/) (313)
T LEON where g, 1s a root of Equation (3.13) or (3.1%).
St 4F N L
S M%C\ Condition (3.14) implies that stationary points
sy 1 N
/ZO&"f'/ ESQ\ are possible only for
sl AR
A (v + E/1)2 + (/1) <1 (3.16)
Beyond this region C(” = (.
Fig 4 As has already been polnted out, in order to

obtain the asymptotlic expansion sought, we must add
to (3.6) and (3.15) the result of integrating by parts the inner integral of

*) [1] contains the erroneous statement that only transverse waves are pre-
sent in this region (p. 729). As is shown below, this conclusion conflicts
with the laws of energy transfer and wave propagation in fluids.
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(3.1), which gives

- SR 8 (T ol

w2
This component likewise differs from zero only within the circle (3.16).

We finally obtain
L =94 g™ 4@ (3.17)

As 71 -+ » this clearly implies the asymptotic expansioﬁ—for the ordinates
of the free surface with steady source motion. Fig.2 (curve 2) show the
results of asymptotlic computation for n =0 and 1 - «» with the term of
order -~ in Formula (3.6) taken into account. The resulting values are
already in good agreement with the exact results for £ 1 . For comparison,
the figure also includes results calculated with the ald of the stationary
phase formula (curve 3).

Similar calculations were also carried out for the case of unsteady motion.
As 1s clear from the derivation, Formula (3.15) must be valid for all P
includihg small values; this applies to [ as well provided that its time-
independent component is isoclated. Hence, replacing the asymptotic expansion
of the steady-motion wave ordinates by their exact values in (3.17), we
obtain an asymptotic formula applicable for all p

— p() @ 4 g0 4 1
="+ O e v (3.18)

The results of computations using Formula (3.18) shown in Fig.l (curve 2)
indicate that this asymptotlic formula is highly accurate in that range of
values of 1 where computation by numerical integration becomes diffilcult.

A simllar method can be employed to 1nvestlgate the case of disappearance
of a source hitherto moving with a constant velocity which in the first appro-
ximation describes the behavior of waves during retardation of the source.

All that 1s required 1s to find the difference in the ordinates of the waves
during steady motion (1.8) and during acceleration (1.7).

It should be noted in conclusion that the ranges of existence of indivi-
dual asymptotic expansion components found above are in full agreement with
the laws of propagation of disturbances in a fluld of finite depth. Indeed,
their velocity cannot exceed the critical value, so that the fluid remains
at rest outside the circle (3.16). Purther, for transverse waves which turn
out to be practically flat near the line n = O (Fig.4), the group velocity
is equal to ¢’ in accordance with (3.2) and (3.7). The point which starts
from the origin of the coordinate system bound to the source and moves with
a velocity o’ along the x-axis for v > O reaches the upermost point of
~egion (3.10) by the instant + in question. For this reason, all of the
energy of the transverse waves, which, as we know, 1s propagated with the
group velocity [5], turns out to have been carried over the upper boundary
of region (3.10) by the instant «r , so that transverse waves are fully
decayed with this region.



Analysis of waves with unsteady motlon of the source 73

BIBLIOGRAPHY

1. Cherkesov, L.V., Razvitile 1 zatukhanie korabrl'nykh voln (The growth and
decay of ship waves). pMM Vol.27, N 4, 1963,

2. Finkelstein, A.B., The Initial Value Problem for Transient Water Waves.
Commun,Pure Appl.Math., Vol,10, 1957.

3. Sretenskii, L.N., Teoreticheskoe issledovanie o volnovom soprotivlenii
(A theoretical study of wave drag). Trudy tsent.aero-gidrodin.Inst.,
N 319, 1937.

4, Erdélyl, A., Asimptoticheskile razlozheniia (Asymptotic Expansions).
Fizmatgiz, 1962 (*).

5. Mllne-Thomson, L M.ﬁ Teoreticheskala gldrodinamika (Theoretical Hydro-
dynamics). "Mir" Press, 1964 (**),

Translated by A.Y.

Editorial note

*) Dover Publications, Inc., New York, 1956.
**) Macmillan Publications, New York, 1960,



